On the Red/Blue Spanning Tree Problem

نویسندگان

  • Sergey Bereg
  • Minghui Jiang
  • Boting Yang
  • Binhai Zhu
چکیده

A geometric spanning tree of a point set S is a tree whose vertex set is S and whose edge set is a set of non-crossing straight line segments with endpoints in S. Given a set of red points and a set of blue points in the plane, the red/blue spanning tree problem is to find a geometric spanning tree for red points and a geometric spanning tree for blue points such that the number of crossing points of the two trees is minimum. If no three points are collinear, we show that the minimum number of crossing points is completely determined by the number of maximal red chains on the convex hull of all red points and blue points. We design an optimal algorithm for constructing a geometric spanning tree of all the red points and a geometric spanning tree of all the blue points with the minimum number of crossing points. If collinear points are allowed, we prove that the problem of deciding whether there exists a geometric spanning path of all the red points and a geometric spanning path of all the blue points without crossing is NP-complete.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Specializations and Generalizations of the Stackelberg Minimum Spanning Tree Game

Let be given a graph G = (V,E) whose edge set is partitioned into a set R of red edges and a set B of blue edges, and assume that red edges are weighted and form a spanning tree of G. Then, the Stackelberg Minimum Spanning Tree (StackMST) problem is that of pricing (i.e., weighting) the blue edges in such a way that the total weight of the blue edges selected in a minimum spanning tree of the r...

متن کامل

SOLVING A STEP FIXED CHARGE TRANSPORTATION PROBLEM BY A SPANNING TREE-BASED MEMETIC ALGORITHM

In this paper, we consider the step fixed-charge transportation problem (FCTP) in which a step fixed cost, sometimes called a setup cost, is incurred if another related variable assumes a nonzero value. In order to solve the problem, two metaheuristic, a spanning tree-based genetic algorithm (GA) and a spanning tree-based memetic algorithm (MA), are developed for this NP-hard problem. For compa...

متن کامل

A Metaheuristic Algorithm for the Minimum Routing Cost Spanning Tree Problem

The routing cost of a spanning tree in a weighted and connected graph is defined as the total length of paths between all pairs of vertices. The objective of the minimum routing cost spanning tree problem is to find a spanning tree such that its routing cost is minimum. This is an NP-Hard problem that we present a GRASP with path-relinking metaheuristic algorithm for it. GRASP is a multi-start ...

متن کامل

The Stackelberg Minimum Spanning Tree Game on Planar and Bounded-Treewidth Graphs

The Stackelberg Minimum Spanning Tree Game is a two-level combinatorial pricing problem introduced at WADS’07. The game is played on a graph (representing a network), whose edges are colored either red or blue, and where the red edges have a given fixed cost (representing the competitor’s prices). The first player chooses an assignment of prices to the blue edges, and the second player then buy...

متن کامل

Encompassing colored crossing-free geometric graphs

Given n red and n blue points in the plane and a planar straight line matching between the red and the blue points, the matching can be extended into a bipartite planar straight line spanning tree. That is, any red-blue planar matching can be completed into a crossing-free red-blue spanning tree. Such a tree can be constructed in O(n log n) time. keywords: geometric graph, spanning tree, color

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Theor. Comput. Sci.

دوره 412  شماره 

صفحات  -

تاریخ انتشار 2009